$$ \frac{TP}{TP+FP} $$
Recall (Sensitivity): What % of positives are correctly identified?
$$ \frac{TP}{TP+FN} $$
Specificity: What % of negatives are correctly identified?
$$ \frac{TN}{TN+FP} $$
Accuracy
$$ \frac{TP+TN}{All \space Observations} $$
$$ \frac{2 \times Precision \times Recall}{Precision + Recall} $$
Confusion Matrix
| | Actual 1 | Actual 0 | | --- | --- | --- | | Predicted 1 | TP | FP | | Predicted 0 | FN | TN |
ROC AUC (Receiver Operator Characteristics)
Plot True Positive Rate
vs False Positive Rate
OR Sensitivity
vs 1-Specificity
PR AUC (Precision Recall)
Plot Recall/Sensitivity
vs Precision
If % of zeros is high, we can use precision instead of false +ve rate
Information value
$$ IV = \sum(\%Goods - \%Bads)\times ln(\frac{\%Good}{\%Bads}) $$